Tactile priming modulates the activation of the fronto-parietal circuit during tactile angle match and non-match processing: an fMRI study

نویسندگان

  • Jiajia Yang
  • Yinghua Yu
  • Akinori Kunita
  • Qiang Huang
  • Jinglong Wu
  • Nobukatsu Sawamoto
  • Hidenao Fukuyama
چکیده

The repetition of a stimulus task reduces the neural activity within certain cortical regions responsible for working memory (WM) processing. Although previous evidence has shown that repeated vibrotactile stimuli reduce the activation in the ventrolateral prefrontal cortex, whether the repeated tactile spatial stimuli triggered the priming effect correlated with the same cortical region remains unclear. Therefore, we used event-related functional magnetic resonance imaging (fMRI) and a delayed match-to-sample task to investigate the contributions of the priming effect to tactile spatial WM processing. Fourteen healthy volunteers were asked to encode three tactile angle stimuli during the encoding phase and one tactile angle stimulus during the recognition phase. Then, they answered whether the last angle stimulus was presented during the encoding phase. As expected, both the Match and Non-Match tasks activated a similar cerebral network. The critical new finding was decreased brain activity in the left inferior frontal gyrus (IFG), the right posterior parietal cortex (PPC) and bilateral medial frontal gyri (mFG) for the match task compared to the Non-Match task. Therefore, we suggest that the tactile priming engaged repetition suppression mechanisms during tactile angle matching, and this process decreased the activation of the fronto-parietal circuit, including IFG, mFG and PPC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII) receives projections from the unilateral primary somatosensory cortex (SI), and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII ...

متن کامل

Working memory of somatosensory stimuli: an fMRI study.

In a previous study, we have shown that passive recognition of tactile geometrical shapes (i.e. no exploratory movement) engages prefrontal and premotor areas in addition to somatosensory regions (Savini et al., 2010). In the present study we tested the hypothesis that these regions are involved not only in the perception but also during working memory of such somatic information. We performed ...

متن کامل

Comparing tactile pattern and vibrotactile frequency discrimination: a human FMRI study.

We investigated to which extent the discrimination of tactile patterns and vibrotactile frequencies share common cortical areas. An adaptation paradigm has been used to identify cortical areas specific for processing particular features of tactile stimuli. Healthy right-handed subjects performed a delayed-match-to-sample (DMTS) task discriminating between pairs of tactile patterns or vibrotacti...

متن کامل

Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure.

We explored cortical fields on the upper bank of the Sylvian fissure using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to measure responses to two stimulus conditions: a tactile stimulus applied to the right hand and a tactile stimulus with an additional movement component. fMRI data revealed bilateral activation in S2/PV in response to tactile stimulation alon...

متن کامل

Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.

Recent studies of neural correlates of working memory components have identified both low-level perceptual processes and higher-order supramodal mechanisms through which sensory information can be integrated and manipulated. In addition to the primary sensory cortices, working memory relies on a widely distributed neural system of higher-order association areas that includes posterior parietal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014